Repository logo
 

An evolutionary physics-informed deep learning model for a prediction of physical fields at an arbitrary time: Case study on transient heat conduction

dc.contributor.advisor村松, 眞由 / 准教授
dc.contributor.authorYAMAZAKI, YUSUKE / 山嵜, 祐輔
dc.date.accessioned2025-06-20T01:07:43Z
dc.date.available2025-06-20T01:07:43Z
dc.date.issued2024-03-26
dc.description修士(工学), 2023, 開放環境科学専攻
dc.identifier.urihttp://131.113.16.178:8181/sigma_local/handle/10721/15286
dc.languageen
dc.publisher慶應義塾大学理工学研究科
dc.subject有限要素法ja
dc.subject熱伝導ja
dc.subjectPhysics-informed deep learningen
dc.subjectFinite element methoden
dc.subjectHeat conductionen
dc.subjectOperator learningen
dc.titleAn evolutionary physics-informed deep learning model for a prediction of physical fields at an arbitrary time: Case study on transient heat conduction
dc.title.alternativePhysics-informed neural networkを援用した任意時間における物理場を予測する深層学習モデルの構築:過度熱伝導問題における検討
dc.type学位論文

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
abstract.pdf
Size:
82.95 KB
Format:
Adobe Portable Document Format

Collections